Letter to the Editor

A Remark on Best L^{1}-Approximation by Polynomials

Helmut Brass

Institute of Applied Mathematics, University of Braunschweig, 3300 Braunschweig, West Germany

Communicated by Oved Shisha
Received November 28, 1983

Let P_{n} denote the set of all real polynomials of degree n. The sequence

$$
E_{n}[f]:=\inf _{p \in P_{n}} \int_{-1}^{1}|f(x)-p(x)| d x, \quad n=0,1, \ldots
$$

has been studied in the literature for various real functions $f \in L^{1}[-1,1]$ [1, 4-7]. The starting point was mostly the following theorem of Markoff: Let

$$
U_{n}(t):=\frac{\sin [(n+1) \arccos t]}{\sqrt{1-t^{2}}}
$$

denote the Chebyshev polynomials of the second kind and let intpol ${ }_{n}[f]$ denote the interpolation polynomial of f with respect to the zeros of U_{n} as nodes. If $\left(f-\operatorname{intpol}_{n}[f]\right) U_{n}$ has no changes of sign on $[-1,1]$, then

$$
\begin{equation*}
E_{n-1}[f]=\left|\int_{-1}^{1} f(t) \operatorname{sgn} U_{n}(t) d t\right| \tag{1}
\end{equation*}
$$

The purpose of this note is to point out that the evaluation of the integral (1) is easy if the expansion of f in terms of U_{v},

$$
f \sim \sum_{v=0}^{\infty} b_{v} U_{v}, \quad b_{v}=\frac{2}{\pi} \int_{-1}^{1} f(x) U_{v}(x) \sqrt{1-x^{2}} d x
$$

or in terms of $T_{v}(:=\cos v \operatorname{arcos} x)$,

$$
f \sim \frac{a_{0}}{2}+\sum_{v=1}^{\infty} a_{v} T_{v}, \quad a_{v}=\frac{2}{\pi} \int_{-1}^{1} f(x) \frac{T_{v}(x)}{\sqrt{1-x^{2}}}
$$

is known.

Theorem. If $f \in L^{1}[-1,1]$, then

$$
\begin{equation*}
\int_{1}^{1} f(t) \operatorname{sgn} U_{n}(t) d t=2 \sum_{v=0}^{\infty}(2 v+1)^{-1} b_{(2 v+1)(n+1)-1} \tag{2}
\end{equation*}
$$

Proof. It is well known (e.g., [11, p. 90]) that the Fourier series

$$
\operatorname{sgn} \sin x=4 \pi^{-1} \sum_{v=0}^{\infty}(2 v+1)^{-1} \sin (2 v+1) x
$$

has uniformly bounded partial sums. Therefore

$$
\operatorname{sgn} U_{n}(t)=4 \pi^{-1} \sum_{v=0}^{\infty}(2 v+1)^{-1} \sin (n+1)(2 v+1) \arccos t
$$

has the same property, and the application of Lebesgue's dominated convergence theorem leads to

$$
\begin{aligned}
\int_{-1}^{1} f(t) & \operatorname{sgn} U_{n}(t) d t \\
= & 4 \pi^{-1} \sum_{v=0}^{\infty}(2 v+1)^{-1} \int_{-1}^{1} f(t) \\
& \times \sin (n+1)(2 v+1) \arccos t d t \\
= & 2 \sum_{v=0}^{\infty}(2 v+1)^{-1} b_{(2 v+1)(n+1)-1}
\end{aligned}
$$

The coefficients a_{v} were studied by many authors (e.g., $[2,3,8-10]$). Because of $2 b_{v}=a_{v}-a_{v+2}$ we can apply (2) to a great variety of functions. The aforementioned results on $E_{n}[f]$ (via (1)) may be derived in a simple and uniform manner by using (2). Many further examples of the application of (1) and (2) are equally simple; the following special cases may be mentioned:

$$
\begin{aligned}
& f(x)=\left(1-x^{2}\right)^{-1 / 2}, \quad E_{2 n-1}[f]=\pi(2 n+1)^{-1}, \\
& f(x)=\arcsin x, \quad E_{2 n-2}[f]=\frac{\pi}{2 n}\left(1+\tan ^{2} \frac{\pi}{4 n}\right)-2 \tan \frac{\pi}{4 n}, \\
& f(x)=\left(x^{2}+a^{2}\right)^{-1}, \quad E_{2 n-1}[f]=4|a|^{-1} \arctan \left(\sqrt{a^{2}-1}-|a|\right)^{n}, \\
& f(x)=|x|^{s}, \quad s>-1 \text { not an even integer, } \\
& E_{2 n-1}[f]=\frac{8 \Gamma(s+1)\left|\sin 2^{-1} \pi s\right|}{\pi(2 n+1)^{s+1}}\left(\sum_{v=0}^{\infty} \frac{(-1)^{v}}{(2 v+1)^{s+2}}\right)\left(1+O\left(n^{-2}\right)\right) .
\end{aligned}
$$

The application of Markoffs theorem is allowed; this can be shown using symmetry and Rolle's theorem. See the paper of Fiedler and Jurkat [4].

References

1. N. I. Achieser, "Theory of Approximation," Ungar, New York, 1956.
2. H. Brass, Zur Approximation einer Klasse holomorpher Funktionen im Reellen, in "Approximation in Theorie und Praxis" (G. Meinardus, Ed.), Bibliographisches Institut, Mannheim, West Germany, 1979.
3. D. Elliott, The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function, Math. Comp. 18 (1964), 274-281.
4. H. Fiedler and W. B. Jurkat, Best L^{1}-approximation by polynomials, J. Approx. Theory 37 (1983), 269-292.
5. J. H. Freilich, Best and partial best L^{1} approximations by polynomials to certain rational functions, J. Approx. Theory 15 (1975), 41-49.
6. S. M. Nikolsky, On the best approximation in the mean to the function $|a-x|^{s}$ by polynomials, Bull. Acad. Sci. URSS Ser. Math. 11 (1947), 139-180. [Russian]
7. E. Passow, Another proof of Jackson's theorem, J. Approx. Theory 3 (1970), 146-148.
8. S. Paszkowski, "Zastosowania numeryczne wielomianów i szeregów Czebyszewa," PWN, Warsaw, 1975.
9. R. Piessens and R. Criegers, Estimation asymptotique des coefficients du dévellopement en série de polynomes de Chebyshev d'une fonction ayant certaines singularités, C. R. Acad. Sci. Paris Ser. A 278 (1974), 405-407.
10. Th. J. Rivlin, "The Chebyshev Polynomials," Wiley, New York, 1974.
11. A. Zygmund, "Trigonometric Series," Vol. 1, Cambridge Univ. Press, London/New York, 1959.
