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Let P" denote the set of all real polynomials of degree n. The sequence

E,,[f] := inf r If(x) - p(x)1 dx,
p E P n -1

n=O, 1, ...

(1)

has been studied in the literature for various real functions.rELI [ - 1, 1]
[1, 4-7]. The starting point was mostly the following theorem of Markoff:
Let

)
._ sin[(n + 1) arc cos t]

U,,(t .- ~
v 1- t

2

denote the Chebyshev polynomials of the second kind and let intpol,,[f]
denote the interpolation polynomial of f with respect to the zeros of U" as
nodes. If (f- intpol" [f]) U" has no changes of sign on [- 1, 1], then

£"_1 [f] = It I f(t) sgn U,,(t) dtl·

The purpose of this note is to point out that the evaluation of the integral
(1) is easy if the expansion of.r in terms of Uv ,

v=o

2 IIb v =- f(x)UJx)JI=?dx,
17: -1

or in terms of Tv (:= cos v arcos x),

is known.
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THEOREM. IffE L I[ -I, I], then

rIf(t)sgn UAt)dt=2 v~o (2v+I)-lb(2v+1Hn+I)_I' (2)

Proof It is well known (e.g., [II, p. 90]) that the Fourier series

CX'

sgn sin x =4n -I L (2v + I) -I sin(2v + I) X

v=o

has uniformly bounded partial sums. Therefore

oc

sgnUAt)=4n- 1 L (2v+l)-lsin(n+I)(2v+l)arccost
v=o

has the same property, and the application of Lebesgue's dominated
convergence theorem leads to

r f(t) sgn Un(t) dt
- 1

=4n I f (2v+ 0,,1r f(t)
.~O -I

x sin(n + I )(2v + I) arc cos t dt

ct:.

=2 L (2v+I)-lb(2HIHn+ll-I'
\,=0

The coefficients a v were studied by many authors (e.g., [2,3,8-10]).
Because of 2b. = a v - av + 2 we can apply (2) to a great variety of functions.
The aforementioned results on En[f] (via (1» may be derived in a simple
and uniform manner by using (2). Many further examples of the
application of (1) and (2) are equally simple; the following special cases
may be mentioned:

f(x) = arc sin x, n( 2n) nE 2n - 2 [f]=2n 1 + tan 4n -2tan 4n ,

E 21/ _ I [f] = 4jaj- I arctan(~ -jaj)",

f(x) = IxlS, s> -1 not an even integer,

8r(s+1)lsin2- 1nsl (CO (-I)") -2

E 2n - I [f]= n(2n+l)'+1 v~0(2v+lr+2 (1+0(n ».
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The application of Markoffs theorem is allowed; this can be shown using
symmetry and Rolle's theorem. See the paper of Fiedler and Jurkat [4].
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